ASSESSMENT OF PSYCHOPATHOLOGY AND PERSONALITY WITH THE MMPI-2 IN PATIENTS WITH ALCOHOL USE DISORDER (AUD): SHOULD WE NOT CORRECT FOR ASSOCIATED COGNITIVE DYSDYSFUNCTIONS?

Serge J.W. Walvoort, Arie J. Wester, Jos I.M. Egger

Abstract

Objective: Treatment planning for patients with Alcohol Use Disorder (AUD) is often preceded by the assessment of psychopathology and personality with the Minnesota Multiphasic Personality Inventory (MMPI-2). However, in the acute phase of abstinence, both physical and cognitive problems can cause temporary elevations on multiple clinical scales of the MMPI-2 resulting in inadequate interpretation and treatment planning. Over the past years, several correction procedures were developed to correct for these problems in different neurological disorders, but until this date, there are no published data available on correction procedures for AUD patients.

Method: Extensive literature search in Pubmed, Medline, and Psychinfo for the period from 1975 through 2011 resulted in thirty-five studies on MMPI (-2) correction procedures typically developed for neurological patient groups.

Results: Review of the literature demonstrates that, given the similarity of cognitive deficits in patients with AUD and in those with Traumatic Brain Injury (TBI), the use of an MMPI-2 neurocorrective procedure may be helpful to avoid over-interpretation of psychopathology and personality profiles during the acute phase of abstinence and to formulate more adequate treatment planning.

Conclusions: Further empirical research should focus on the development and validation of such a neurocorrective procedure, that specifically addresses the alcohol-induced cognitive symptoms during the acute phase of withdrawal.

Key words: alcohol use disorder, alcohol dependence, cognitive dysfunctions, neurocognition, neurobehavioural correction, MMPI-2, psychopathology, personality.

Declaration of interest: none

Serge J.W. Walvoort 1,2, Arie J. Wester 1,2, Jos I.M. Egger 3,4,5
1. Centre for Korsakoff and Alcohol Related Cognitive Dysfunctions, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
2. Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University Nijmegen, Nijmegen, The Netherlands
3. Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute, Venray, The Netherlands
4. Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
5. Pompe Institute for Forensic Psychiatry, Pro Persona, Nijmegen, The Netherlands

Corresponding author
Ph. +31.478.527.339, Fax: +31.478.630.797; E-mail: j.egger@psych.ru.nl

Introduction

It is common practice to assess emotional functioning in patients with Alcohol Use Disorders (AUD) and to use this information in the process of treatment design and planning. To this end, often, the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) is applied. The MMPI-2 is internationally the most widely used self-report questionnaire for the assessment of personality and psychopathology (Butcher 2006). It is well known that individuals who enter substance abuse treatment centres, often experience emotional discomfort and distress as part of their multi-problem crisis. Such a crisis nearly always precedes admission to an addiction clinic (Becker 2003, Bartels et al. 2007, Schuckit 2009) and is associated with elevations on multiple clinical scales of the MMPI-2 (Forbey and Ben-Porath 2007).

During the process of abstinence, withdrawal of...
alcohol can lead to a variety of physical, emotional, and cognitive complaints. The physical symptoms disappear within days whereas the cognitive, emotional, and motivational deficits, caused by the neurotoxic effect of alcohol, tend to persist during several weeks after admission (e.g., Becker 2008).

Several reports of cognitive dysfunctions are found in patients with AUD, including deficits in memory, executive attention, planning, the processing of environmental feedback, working memory, and response inhibition (Goldstein et al. 2007, Scheurich 2005, Loeb et al. 2009). Also, a gradual decline of social and emotional functioning is described, for example in the studies on personality change by Bates, Barry, and Bowden (2002), and Scheurich (2005). This is in line with studies demonstrating the toxic effect of alcohol on brain functioning and adaptive behaviour in general (Allen et al. 1997, Mosely et al. 2001, Crews et al. 2005, Davies et al. 2005, Kalivas and Volkow 2005, Oscar-Berman and Marinovic 2007, Schuckit 2009).

To some extent, cognitive functions recover during abstinence (Mann et al. 1999, Martin et al. 2003, Sullivan and Pfefferbaum 2005, Manning et al. 2008). This recovery process can last up to several years (Bates et al. 2002, Fein et al. 2006). Withdrawal symptoms can influence the response pattern on self-report questionnaires in such a way that the level and pattern of scale-scores leads to clinical misinterpretation (Johnson-Greene et al. 2002). Dush and Keen (1995) found that over 30 days of abstinence, the overall elevation of MMPI clinical scales in AUD patients tended to decline and the profiles became less distinctive. This is in accordance with MMPI and MMPI-2 studies on patient groups with neurological deficits, where the influence of psychological disturbance leads to unreliable scores and wrong treatment indication (Alfano et al. 1993, Van Balen et al. 1997, Van Balen et al. 1999).

In order to deal with the influence of cognitive deficits on the MMPI, and later on the MMPI-2, several correction procedures were developed for different neurological disorders over the past years. These correction procedures are based on the identification of neurologically relevant items (NRI’s), which refer to neurological symptoms, like attention problems, headache, nausea, physical discomfort, and loss of energy. These symptoms are also observed in AUD patients during abstinence (Becker 2008). Although there is a remarkable similarity between the neuropsychological profile of patients with chronic substance abuse and that of patients with mild traumatic brain injury (MTBI) (Lange et al. 2008), until this date, no studies on correction procedures in AUD patients were found, and no systematic research has been conducted to the use of MMPI-2 correction procedures in AUD patients during abstinence.

Therefore, the aim of this study is to review the clinical relevance of using correction procedures in AUD patients during the acute phase of abstinence. Given the long tradition of MMPI and MMPI-2 research in AUD patients, the most relevant findings on alcohol related profiles will be summarized first.

The MMPI-2 in the assessment of AUD patients

The MMPI-2 is a self-report questionnaire with 567 statements to be answered with True or False. The MMPI-2 can be administered with individuals who are at least 18 years old and have at least a sixth grade level of reading ability. After scoring by hand or computer, the individual’s profile can be compared with profiles from the normative sample (Butcher 2006). In the development of the MMPI-2, apart from the MacAndrew Alcoholism Scale Revised [MAC-R (MacAndrew 1965)] that was already part of the original MMPI, two novel substance abuse scales were added: the Addiction Potential Scale and the Addiction Admission Scale [APS; AAS (Weed et al. 1992)]. However, since our main focus is the correct assessment of psychopathology in AUD patients, the specific investigation of these alcoholism scales is beyond the scope of this article. For further reading, see Banken and Greene (2009).

Most of the MMPI and MMPI-2 studies investigate the clinical scales by their elevations and code types, as described by Graham (2006). Although it is clear that there is no unique alcohol personality in AUD patients (Banken and Greene 2009), code types are used to identify, in a quick way, AUD patients with similar treatment needs in improving treatment outcome (Allen 1996). Graham and Strenger (1988) found, in their review of the use of the MMPI in AUD patients, that the most consistent finding between alcoholic and non-alcoholic patients was a high score on clinical scale 4, which is quite stable over level of but not unique to AUD patients only. Egger and co-workers (2007) distinguished three types of alcohol dependence: (a) the antisocial, immature, risk-taking type; (b) the negativistic, alienated, schizoid type, and (c) the anxious, passive, introverted type. In this study it was pointed out, however, that such a distinction is not independent of other psychological and cognitive deficits during abstinence, for example inhibitory dysfunctions. On the other hand, a study with Korsakoff patients demonstrated low psychopathology and undisturbed personality patterns on their “flat” MMPI-2 profile, indicating the illusion of a problem free and well-adjusted patient group. The authors emphasized the need for further investigation into the lack of (illness) insight that accompanies several neuropsychiatric and neuropsychological phenomena (Egger et al. 2007).

Other studies identified the code type 2-4/4-2 (Scheurich 2005, Lesswing and Dougherty 1993, Donovan et al. 1998) indicating psychopathic deviation, acting out behaviour, and a negative treatment attitude. However, the MMPI was administered in the first two weeks after admission, where the influence of detoxification can affect its outcome. The latter is convincingly demonstrated in the study by Dush and Keen (1995) where the typologies of AUD patients directly after admission and after 30 days of treatment were investigated. The authors found a dramatic overall reduction in pathology on all clinical scales, with the exception of clinical scale 4. They concluded that the MMPI typology itself does not remain stable due to influence of treatment, detoxification over 30 days, the passage of time (from the crisis environment), and regression to the mean.

In short, during the acute phase of abstinence, the AUD patient is hampered by cognitive disturbances due to influence of withdrawal of alcohol, which in turn might be reflected on the MMPI-2 scales. It will take at least six weeks before there is a recovery of functioning to a somewhat stable level in AUD patients. Bates and co-workers (2002) found that the introduction of correction procedures for neuropsychological functioning will increase with the length of the abstinence period, because during such a
period, the brain will have time to regenerate (Geller 1991, Gazdzinski et al. 2008, Wobrock et al. 2009).

Method

An extensive literature search was performed in Pubmed, Medline, and Psychinfo for the period from 1975 through October 2011. On each of the combined search terms Alcohol AND Neurocorrection, Abstinence AND Neurocorrection, Alcohol AND Neurologically Relevant Items, Abstinence AND Neurologically Relevant Items, no articles were found. In the absence of such studies, the usefulness of existing MMPI-2 correction procedures, originally developed for neurological patient groups, is examined. Therefore, each of the combined search terms MMPI* AND Neurocorrection, MMPI* AND correction, MMPI* AND neurologically relevant items, MMPI* AND correction procedure, and MMPI* AND Neurologic were used to search the Psychinfo, Pubmed, and Medline database (see Table 1).

Only studies on MMPI and MMPI-2 correction procedures, their clinical relevance, and studies that commented these procedures, were included. Studies on K-correction were excluded. Twenty-seven articles matched the criteria and eight studies were added by reference and citation analysis. A total of thirty-five articles were studied.

<table>
<thead>
<tr>
<th>Search term</th>
<th>Pubmed</th>
<th>Psychinfo</th>
<th>Medline</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMPI* AND neurocorrection</td>
<td>2 (2)</td>
<td>0 (2)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>MMPI* AND correction</td>
<td>13 (74)</td>
<td>17 (67)</td>
<td>11 (161)</td>
</tr>
<tr>
<td>MMPI* AND neurologically relevant items</td>
<td>2 (3)</td>
<td>2 (2)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>MMPI* AND correction procedure</td>
<td>7 (27)</td>
<td>3 (15)</td>
<td>3 (15)</td>
</tr>
<tr>
<td>MMPI* AND neurologic</td>
<td>9 (74)</td>
<td>5 (71)</td>
<td>7 (171)</td>
</tr>
</tbody>
</table>

Remaining articles without overlap 27
Additional articles by reference and citation analysis 8
Total studied articles 35

Note. MMPI = Minnesota Multiphasic Personality Inventory. In parentheses the amount of articles, in bold the amount of articles who met the criteria of the current study.

Results

MMPI-2 and correction procedures

Baldwin (1952) was one of the first to apply a correction procedure in patients with Multiple Sclerosis (MS). MMPI items, which refer to neurological symptoms, were removed before scoring. In the development of correction procedures, different names were used for items, which refer to a neurological content. For convenience, the current study uses the term neurologically relevant items (NRI’s). Besides the development of correction procedures in patients with MS (Meyerink et al. 1988, Nelson et al. 2003), procedures were developed in different patient groups, including epilepsy (Derry et al. 1997, Nelson et al. 2004), cerebrovascular disease (Gass 1992), stroke (Gass and Lawhorn 1991, Gass 1996), Spinal Cord Injury (SCI) (Kendall et al. 1978, Rodevich and Wanlass 1995, Barn cord and Wanlass 2000), obstructive sleep apnea (Gale et al. 1999) and TBI (Alfano et al. 1990, Alfano et al. 1993, Cripe et al. 1995, Gass and Wald 1997, Van Balen et al. 1997). A correction procedure involves constructing a set of neurologically relevant items contained within existing personality or emotional scales that measures neurologic dysfunction. The effects of these NRI’s are thus separated out and examined independently of emotional functioning. In this way, purer estimates of cognitive and emotional functioning can be obtained in groups of brain-damaged individuals (Nelson and Cicchetti 1995).

Correction procedures are available for both the MMPI, the MMPI-2, and the MMPI-2 short form. The procedures differ in the amount of a) NRI’s that are endorsed; b) in the way these NRI’s are selected, and c) how they are implemented in the scoring procedure. Although several procedures have been developed for comparable patient groups, there are differences in the amount of NRI’s that were identified (see Table 2). For instance, in TBI patients, Alfano et al. (1990) identified 44 NRI’s. In a follow up study, 13 NRI’s were derived from these 44 NRI’s (Alfano et al. 1993). Gass (1991) identified 14 and 15 NRI’s for the MMPI-2 short form. Gass and Russell (1991) identified 42 NRI’s, Artzy (in Brulot et al. 1997) identified 18 NRI’s, and Van Balen et al. (1997) identified 24 NRI’s. In using a correction procedure both the MMPI and the MMPI short form are used, explaining some of the differences in the amount of the NRI sets. However, the main difference is explained by the methodology used to identify items in both patients with TBI and patients with epilepsy, multiple sclerosis, stroke, and spinal cord injury.

Most of the correction procedures are based on the clinical experience of medical specialists, familiar with neurological patient groups. These specialists were asked to identify items in the MMPI booklet, which reflect neurologic symptoms that can be viewed as...
part of the illness. Based on the degree of agreement between the specialists, items were included in the correction procedure (Meyerink et al. 1988, Alfano et al. 1990, Gass and Russell 1991, Alfano et al. 1993, Rodevich and Wanlass 1995, Van Balen et al. 1997, Barn cord and Wanlass 2000, Derry et al. 2002). There is a difference in the amount of specialists who were questioned, ranging from two (Meyerink et al. 1988, Derry et al. 1997, Barn cord and Wanlass 2000, Derry et al. 2002) through 40 (Van Balen et al. 1997). Other authors used a statistical procedure to select NRI’s by comparing the scores of neurological patients with the scores of a normative group. Items were only included in the procedure if they were statistically different. For instance, Kendall and colleagues (1978) used factor analysis to differentiate between SCI patients and a

Table 2. Summary of MMPI-2 correction procedures and associated clinical scales

<table>
<thead>
<tr>
<th>Patient group</th>
<th>Authors</th>
<th>Number of NRI’s</th>
<th>Method</th>
<th>Deleted/ prorated</th>
<th>Form</th>
<th>Affected clinical scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epilepsy</td>
<td>Derry et al. 1997</td>
<td>19</td>
<td>Empirical</td>
<td>Deleted</td>
<td>MMPI-2</td>
<td>1, 2, 3, 7, 8</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>Nelson et al. 2004</td>
<td>25</td>
<td>Combined: statistical and empirical</td>
<td>Deleted</td>
<td>MMPI-2</td>
<td>1, 2, 3, 8</td>
</tr>
<tr>
<td>MS</td>
<td>Baldwin 1952</td>
<td>12</td>
<td>Empirical</td>
<td>Deleted</td>
<td>MMPI</td>
<td>1, 2, 3, 8</td>
</tr>
<tr>
<td>MS</td>
<td>Meyerink et al. 1988</td>
<td>30</td>
<td>Empirical</td>
<td>Deleted</td>
<td>MMPI</td>
<td>1, 2, 3, 8</td>
</tr>
<tr>
<td>MS</td>
<td>Nelson et al. 2003</td>
<td>19</td>
<td>Statistical</td>
<td>Deleted</td>
<td>MMPI-2</td>
<td>1, 2, 3, 8</td>
</tr>
<tr>
<td>SCI</td>
<td>Barncord and Wanlass 2000</td>
<td>49</td>
<td>Empirical</td>
<td>Deleted</td>
<td>MMPI-2</td>
<td>1, 2, 3, 7, 8</td>
</tr>
<tr>
<td>SCI</td>
<td>Kendall et al. 1978</td>
<td>10</td>
<td>Statistical</td>
<td>Deleted</td>
<td>MMPI</td>
<td>1, 2, 3, 4, 8</td>
</tr>
<tr>
<td>SCI</td>
<td>Rodevich and Wanlass 1995</td>
<td>28</td>
<td>Empirical</td>
<td>Deleted</td>
<td>MMPI-2</td>
<td>1, 2, 3, 7, 8</td>
</tr>
<tr>
<td>Stroke</td>
<td>Gass 1992</td>
<td>21</td>
<td>Statistical</td>
<td>Prorated</td>
<td>MMPI-2 short form</td>
<td>1, 2, 3, 7, 8</td>
</tr>
<tr>
<td>TBI</td>
<td>Alfano et al. 1990</td>
<td>44</td>
<td>Empirical</td>
<td>Deleted</td>
<td>MMPI</td>
<td>1, 2, 8</td>
</tr>
<tr>
<td>TBI</td>
<td>Alfano et al. 1993</td>
<td>13</td>
<td>Empirical</td>
<td>Deleted</td>
<td>MMPI</td>
<td>1, 2, 8</td>
</tr>
<tr>
<td>TBI</td>
<td>Artzy 1994</td>
<td>18</td>
<td>Statistical</td>
<td>Deleted</td>
<td>MMPI-2</td>
<td>1, 2, 8</td>
</tr>
<tr>
<td>TBI</td>
<td>Gass and Russell 1991</td>
<td>42</td>
<td>Empirical</td>
<td>Prorated</td>
<td>MMPI</td>
<td>1, 2, 3, 7, 8</td>
</tr>
<tr>
<td>TBI</td>
<td>Gass 1991</td>
<td>14</td>
<td>Empirical</td>
<td>Prorated</td>
<td>MMPI-2 short form</td>
<td>1, 2, 3, 7, 8</td>
</tr>
<tr>
<td>TBI</td>
<td>Gass and Wald 1997</td>
<td>15</td>
<td>Statistical</td>
<td>Prorated</td>
<td>MMPI-2 short form</td>
<td>1, 2, 3, 7, 8</td>
</tr>
<tr>
<td>TBI</td>
<td>Van Balen et al. 1997</td>
<td>24</td>
<td>Empirical</td>
<td>Prorated</td>
<td>MMPI-2</td>
<td>1, 2, 3, 7, 8</td>
</tr>
</tbody>
</table>

Note. MMPI= Minnesota Multiphasic Personality Inventory, MS= Multiple Sclerosis, NRI= Neurologically Relevant Items, SCI= Spinal Cord Injury, TBI= Traumatic Brain Injury.
Validity and clinical utility of the correction procedures

Since the development of MMPI correction procedures, several validity studies were published in order to evaluate its use in clinical practice. Several critiques pointed at the fact that these procedures assume the profiles of neurologic patients to be relative homogeneous, that correction procedures lack specificity for neurological impairment, and that they compromise the integrity of the MMPI as such (Cripe et al. 1995, Arbisi and Ben-Porath 1999, Edwards et al. 2003). Also, Greene et al. (1997) criticized the correction procedures for their poor empirical validity and advised clinicians to be cautious in using these sets of correction items until they have been validated empirically across several settings. Moreover, Cripe et al. (1995) suggest that any given item of the MMPI may be endorsed for a variety of reasons and that resulting scale elevations for two individuals can be the same for different reasons.

Replication studies, such as Dunn and Lees-Haley (1995) found that only 5 of the 14 NRI's, identified by Gass (1991), discriminated significantly between head-injured and non head-injured patients in a forensic setting. However, the correction effect is not clinical significant. Smith and Heilbroner (2000) used these NRI's in a sample of mild TBI patients in litigation and concluded that patients are more likely to endorse acute neurologic symptoms that are likely to resolve following mild head injury (Rayls et al.1997, Rayls et al. 2000).

Glassmire et al. (2003) investigated three correction procedures (Alfano et al. 1993, Gass 1991, Gass and Wald 1997) on sensitivity and specificity. They found a strong sensitivity in discriminating Closed Head Injury (CHI) patients from normal individuals, and weaker specificity when discriminating CHI from psychiatric patients. These findings are not surprisingly, since in most psychiatric patients severe cognitive deficits are found. Brulot, Strauss, and Spellacy (1997) compared the correction procedures developed by Alfano et al. (1993), Artzy (in Brulot et al. 1997), and Gass (Gass 1991) in patients with suspected head injury. They found that the NRI’s lack discriminant validity. Edwards and colleagues (2003) compared three correction procedures (Meyerink et al. 1988, Alfano et al. 1990, Gass 1991) and concluded that these three correction procedures are not specific in distinguishing patients with closed head injury and psychiatric patients, it undermines the statistical integrity of the MMPI, and the meaning of scale elevations are less clear after correction. However, in 66% of their sample, no information is present regarding premorbid psychiatric functioning, or drug and alcohol abuse. Patients were administrated ranging from 1 month to 7 years following suspected head injury, while it is well known that the symptoms of acute neurologic consequences of mild head injury are likely to resolve after 3-6 months post injury (Rayls et al. 2000). In a replication study of the 44 NRI’s identified by Alfano (Alfano et al. 1990), Hamilton and colleagues (1995) found evidence that these procedures NRI’s discriminate between neurological and non-

Clinical Neuropsychiatry (2012) 9, 6
neurological groups. In addition, the authors suggest that in head-injured patients, emotional manifestations are more likely to be expressed in terms of cognitive, somatic, or behavioural dysfunction, caused by a lack of insight or other cognitive impairments resulting from brain damage, trouble expressing appropriate affect, decreased levels of arousal, or location of maximal damage. The latter implies that the danger of over scoring psychopathology in neurological patient groups remains when using the MMPI-2. This is in line with the recommendations of Hayes and Granville (2009), in their study with patients with MS, to score the MMPI-2 twice (with and without neurocorrections) to note differences that may be based on physical symptoms. Also, they recommend the use of a clinical interview that highlights MS symptoms to increase the effectiveness of MMPI-2 assessment in treatment planning.

Arbisi and Ben-Porath (1999) stated that, in order to obtain an accurate measure of psychopathology, the NRI’s must be scored in a different direction (prorated). Also a cautious clinical application of the nri’s must be scored in a different direction to obtain an accurate measure of psychopathology, planning.

The effectiveness of MMPI-2 assessment in treatment planning could assist in planning adequate treatment planning, resulting in a more adequate treatment planning, could assist in planning later treatment stages. He also recommends the delay of testing until the patient’s condition has been stabilized after detoxification. This is in line with the findings of Dush and Keen (1995) where all clinical scales declined, except for clinical scale 4, over a period of 30 days of abstinence. Although one could argue that MMPI-2 assessment should be postponed until most symptoms are in remission, clinically, the early availability of information on psychological and socio-emotional functioning is of great importance to effective treatment design.

All this leads to the conclusion that detection of cognitive deficits is of major importance to the design of proper treatment strategies and to the maximisation of treatment outcome and not to rely on one measure only (Allen et al. 1997, Davies et al. 2005, Scheurich 2005). Currently, a forthcoming study on the effect of neurobehavioral correction on MMPI-2 profile configuration of patients with AUD, shows that uncorrected profiles in AUD patients tend to overestimate the levels of psychopathology; and underrate levels of disinhibitory behaviours and impulsive traits, leading to diagnostic drift and inadequate treatment planning (Walvoort et al. 2012). In this study, only the correction effects on the clinical scales were investigated. It is well known that the clinical scales have an item overlap and consist of demoralisation items. For instance, clinical scales 2 and 7 contain items to be related to anxiety, depression, and other emotional distress, assessing more demoralization than personality, psychopathology (Graham 2012). In order to avoid item overlap and to reduce demoralization, the MMPI-RF, a restructured Clinical (RC) scales were developed (Tellegen et al. 2003). Recent studies of Van der Heijden and co-workers (Van der Heijden et al. 2008, Van der Heijden et al. 2010) indicate that the RC scales have a better internal consistency and a lower scale level intercorrelation than the clinical scales and as a result provide a higher density of information.

Another promising development in the assessment of AUD patients and neurological patients is the MMPI-2-RF. The MMPI-2-RF is shorter, is based on the RC-scales and has several so-called Specific Problem scales, such as Malaise, Somatic complaints, and Neurological complaints. Recent research demonstrates meaningful relations between the MMPI-2-RF and the Temperament and Character Inventory (TCI) (Van der Heijden et al. in press), the Millon Clinical Multiaxial Inventory- III (Van der Heijden et al. 2012a), and in relation to DSM IV (Van der Heijden et al. 2012b). Until now, there are no studies on the impact of a correction procedure on the RC-scales or the other MMPI-2-RF scales. Validation studies are needed in order to justify this non-standard scoring procedure. This is of particular importance for forensic and litigation procedures, where clinicians are bound by standard assessment protocols. Future research on the interplay between personality and cognition and the aforementioned validation studies on the correction procedures are needed to thoroughly address this issue. The current review stipulates that in the acute phase of abstinence, a correction procedure is necessary to avoid misinterpretation of complaints leading to inadequate treatment planning. Along with the withdrawal effects of alcohol, AUD patients also have problems in social cognition (self-awareness and illness insight) caused by the toxic effect of chronic alcohol use (Oscar-Berman and Marinkovic 2007). Recent evidence suggests that alcohol related impairments in emotional functions, may be observed when the cortico-limbic circuitry is unable to compensate for the hypo-activity of the amygdala, resulting in continued alcohol abuse and a wide array of behavioural problems including disinhibition, impulsivity, and interpersonal difficulties (Marinkovic et al. 2009).

In addition, other aspects of neuropsychological functioning will affect the clinical scales during
MMPI-2 administration, including understanding the MMPI-2 statements, the level of difficulty of the statements (e.g. double negatives), and reduced mental effort (e.g. sustained attention, working memory capacity, information processing speed, and decision making). Moreover, a study with a homogeneous group of Korsakoff patients, found deficits in a story comprehension task specifically caused by executive dysfunction (Oosterman et al. 2011). That cognitive dysfunction can influence self-report is also shown in a recent study with alcohol dependant patients by Lincoln and colleagues (Lincoln et al. 2011). They found impairments in the estimation and self-evaluation of past alcohol intake that could be attributed to verbal memory dysfunctions contingent upon chronic alcohol abuse. These studies suggest that AUD patients are both hampered by the somatic complaints and cognitive deficits during abstinence. Although it is clear that the somatic complaints “disappear” during abstinence (Becker 2008), the influence of the alcohol related cognitive deficits (e.g. executive functioning, social cognition and memory) on the MMPI-2 may be greater than expected.

Finally, this review adds to the hypothesis that, in order to acquire a sound diagnostic MMPI-2 profile in AUD patients, an MMPI-2 correction procedure is warranted. In developing such a correction procedure, the following steps will be required: First, a theoretical framework must be given, in which the correction items reflect the alcohol-induced cognitive deficits during abstinence. Second, the use of a pro-rated procedure is necessary in maintaining the statistical procedure of the test. Third, validation studies are needed to investigate the utility in clinical practice. Also, the development of the MMPI-2-RF Specific Problem scales (e.g. Neurological complaints and Cognitive complaints) is promising in the assessment of AUD patients. Studying the discriminatory potential of these scales in detecting underlying cognitive deficits in AUD patients and how elevated scale scores might affect the interpretation process of the other MMPI-2-RF scales would be the next step.

In conclusion, when AUD patients are assessed in the acute phase of abstinence the effects of alcohol withdrawal blur the clinical picture. Application of an MMPI-2 correction procedure may be of critical relevance for the correct interpretation of the psychopathology and personality profile. From there on, adequate and individualized treatment planning requires repeated evaluation of the patients’ emotional and cognitive functioning. Further investigations should focus on the development and validation of the aforementioned correction procedure in conjunction with the MMPI-2-RF Specific Problem scales on its relation with cognitive recovery.

References
Egger JIM, Gringhuis M, Bretelet MA, et al. (2007). MMPI-

MacAndrew C (1965). The differentiation of male alcoholic outpatients from non-alcoholic psychiatric patients by means of the MMPI. *Quarterly Journal of Studies on Alcohol* 8, 309-311.

Serge J.W. Walvoort et al.