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THE ROLE OF GLUTAMATERGIC PATHWAYS IN SCHIZOPHRENIA:
FROM ANIMAL MODELS TO HUMAN IMAGING STUDIES

Paolo Brambilla, Marco A. Riva, Roberto C. Melcangi, Vaibhav A. Diwadkar

Abstract

Glutamate, a key excitatory neurotransmitter in the brain is implicated in the pathophysiology of schizophrenia.
Animal and human studies have demonstrated that glutamate is involved in patterns of normal connective brain
development and its specific receptors such as the N-methyl-D-Aspartate (NMDA) are associated with critical functions
such as learning and memory. Therefore, there is a critical need to integrate animal studies of glutamate
neurotransmission, human in vivo studies of structure and function relevant to the glutamate system, and the
computational models of pharmacologic and behavioural processes. Such integrative approaches are needed to develop
a clearer understanding of the role of glutamate in schizophrenia pathology. In this review, the authors selectively
review relevant findings from the schizophrenia literature, as well as studies in animal and human experimental
studies to motivate the need for a translational and integrative framework. Future experimental approaches to
understanding glutamatergic neurotransmission in schizophrenia will benefit from considering this diverse collection
of experimental literature and such knowledge will sharpen understanding of the precise role of glutamtergic

neurotransmission in schizophrenia.
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Different lines of evidence, including animal
studies, postmortem findings, and imaging studies
suggest that alterations in glutamatergic neuro-
transmission are central to the pathophysiology of
schizophrenia. As an important excitatory neuro-
transmitter, glutamate is central to the normal
connective development of the cortex and its
receptors including alpha-amino-3-hydroxy-5-methyl-
4-isoxasolepropionic acid (AMPA) receptor and
particularly the N-methyl-D-aspartate (NMDA) are
specifically associated with behavioral tasks such as
learning that depend on synaptic plasticity. In this
integrated manuscript, we selectively review the
literature from animal and human experimental work
in regard to glutamate transmission in schizophrenia
debating possible perspective on this field of research.
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Glutamate system and animal models of
schizophrenia

Although historically schizophrenia has been
correlated with a dysfunction of dopaminergic
neurotransmission, a glutamatergic hypothesis has been
put forward, suggesting that a deficiency of NMDA
receptor-mediated transmission might underlie specific
aspects of this mental disorder (Jentsch and Roth 1999,
Tsai and Coyle 2002, Stone et al. 2007). This hypothesis
was initially developed based on the similarities
between schizophrenic symptomatology and the effects
produced by the glutamate NMDA receptor antagonist
phencyclidine (PCP), a drug of abuse also know as
‘angel dust’. Moreover healthy volunteers receiving
ketamine, another NMDA receptor antagonist, show
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positive symptoms, in the form of delusions and thought
disorder, as well as negative symptoms, characterized
by withdrawal and blunted affect (Krystal et al. 1994,
Tsai and Coyle 2002).

Further support to this hypothesis came from
detailed pharmacological and genetic studies. In
rodents, NMDAR antagonists induce a range of acute
effects, including locomotor hyperactivity, prepulse
inhibition (PPI) deficits, and disruption of working
memory, which are highly reminiscent of schizophrenia
symptoms. In primates, NMDAR antagonists also pro-
duce deficits of working memory and PPI. When
compared to acute treatment in humans, prolonged
NMDAR blockade, induced by repeated administration
of receptor antagonists in rodents or primates, leads to
the appearance of hallucinatory-like behavior, enduring
cognitive deficits and cortical dopamine dysfunction,
suggesting that dysregulation of relevant brain systems
may emerge gradually over time (Jentsch et al. 1997,
Balla et al. 2001, Javitt 2004).

In line with these results are data obtained in
transgenic animal models. In particular Mohn and
coworkers developed mice with a knockout of the
obligatory NMDA receptor subunit NR-1 (Mohn et al.
1999). These animals, which express only 5% of NR-1,
show enhanced locomotor activity, which is normalized
by antipsychotic treatment, as well as impaired social
interaction and PPI disruption (Mohn et al. 1999, Duncan
et al. 2004). A similar phenotype has been observed in
knockout mice for the NR-2A subunit.

The involvement of glutamate in schizophrenia has
to be considered in the context of neuronal circuitry
and its close interaction with other neurotransmitters,
including dopamine and GABA. For example,
hypofunction of NMDA receptors in prefrontal
pyramidal cells can lead to decreased activity in cortical
excitatory projections to mesencephalic DA neurons,
projecting to dorso-lateral PFC and increased activity
of DA cells projecting to the striatum (Lewis and
Gonzalez-Burgos 2006).

Important support for the role of glutamate in the
disease has also come from investigations of
susceptibility genes for schizophrenia. Indeed genes
encoding for dysbindin-1, neuregulin-1 (NRG1), D-
amino acid oxidase (DAO), its activator DAOA and
regulator of G protein signalling-4 (RGS4) are not only
important for synaptic plasticity and neuronal
development, but share the ability to directly or
indirectly modulate the function of glutamatergic
synapses and, more specifically, NMDA receptor
mediated transmission (Harrison and Weinberger 2005,
Chen et al. 2006, O’Tuathaigh et al. 2007).

One gene of particular interest is NRGI that is
expressed in different isoforms and has a remarkably
complex biology. NRG1 has a wide range of functional
effects on neuronal and glial cells since it regulates
development, neurotransmission and synaptic plasticity
(Corfas et al. 2004, Harrison and Law 2006). Within
the context of glutamate function in schizophrenia,
NRG1 may modulate the expression of glutamate
receptor subunits and is thought to regulate its kinetic
properties through the phosphorylation of NR2 subunits
(Stefansson et al. 2002, Moghaddam 2003). The
identification of vulnerability genes for schizophrenia
has prompted the development of novel animal mutants

200

that might provide novel insight for the neurobiology
of schizophrenia (Chen et al. 2006). Heterozygous
NRG1 knockout mice lacking the trans-membrane
domain of the gene show hyperlocomotor activity (that
is sensitive to attenuation by antipsychotic treatment),
impaired PPI as well as decreased expression of NMDA
receptors (Stefansson et al. 2002). A similar phenotype
has been observed in mice lacking ErbB4, the NRG1
receptor. Despite these data, the link between NGR-1,
NMDA receptors and schizophrenia is far from being
fully understood. In fact, different single nucleotide
polymorphism (SNP) have been described in NRG1
genes (Law et al. 2006), but their functional
consequences remain unknown (Harrison and Law
2006). According to postmortem studies the mRNA
levels for NRG1 type I isoforms are increased in
schizophrenia, which is in line with the observation that
NRGI induced activation of ErbB4 is increased in the
prefrontal cortex of schizophrenic patients (Hahn et al.
2006). Moreover since NRG1 stimulation may suppress
NMDA receptor activation, the enhanced NRG1
signaling could contribute to NMDA hypofunction in
schizophrenia (Gu et al. 2005, Hahn et al. 2006). This
example highlights the difficulty in translating clinical
data into animal models, especially for genes, such as
NRG1, which are important for development as well
as for the modulation of synaptic plasticity at adulthood
(Chen et al. 2006).

Nevertheless, these recent data suggest that there
is a strong link between susceptibility genes to
schizophrenia and the glutamate system, in particular
the NMDA receptor complex. It is expected that the
vulnerability to the disease might arise from proteins
that are important for the selective and activity-
dependent changes in the function of NMDA receptors
as opposed to gross abnormalities in this receptor
complex. Herein, although structural abnormalities can
be observed in the schizophrenic brain (Kristiansen et
al. 2007), available evidences support the idea that
schizophrenia is a ‘functional’ disease of the synapse
and of cell-cell communication (Moghaddam 2003).

On this basis, it must be emphasized that effective
pharmacological treatments should be able to correct
the abnormalities in glutamatergic function. Although
currently used antipsychotics can regulate different
components of glutamatergic synapses (Tascedda et al.
2001, Heresco-Levy 2003), more direct interventions
are under development and might prove useful for the
amelioration of core symptoms of schizophrenia that
are strongly related to glutamate dysfunction (Tuominen
et al. 2006, Arai and Kessler 2007, Javitt 2008).

The relevance of glutamate to the patho-
physiology of schizophrenia

In vivo studies of structure and neurochemistry,
provide evidence for alterations in hippocampal
structure and quantitated glutamate. Hippocampal vo-
lume deficits have been documented in at-risk,
prodromal and chronic schizophrenia patients
suggesting a plausible loss of gray matter neuropil
(Velakoulis et al. 2001, Keshavan et al. 2002).
Neurochemical imaging studies suggest reduced
expression of the subunits for the three ionotropic
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receptors of the glutamatergic system (NMDA, AMPA,
and kainate) in the hippocampus (Harrison et al. 2003),
related to the expression of vulnerability genes
including DISC1 and GRM3 that have been associated
with schizophrenia (Harrison and Weinberger 2005).
The mechanisms that relate reduced NMDAR
sensitivity to psychosis are obscure, but putative
reductions may have cascading effects including tonic
reduction in glutamatergic transmission (Keshavan
1999), its ultimate expression in selective behavioral
deficits on fronto-temporal lobe tasks (Greene 2001)
or excitatory glutamatergic neurotoxicity (Konradi and
Heckers 2003). Neurochemical studies of the
hippocampus and other structures in schizophrenia are
consistent with this idea. /n vivo spectroscopy indicate
systematic patterns of pathology in the hippocampus,
including reduced N-acetyl-aspartate (NAA; an intra-
neuronal marker of integrity) ( Nasrallah et al. 1994,
Bertolino et al. 1996, Deicken et al. 1998). These
findings are not restricted to the hippocampus alone.
Post mortem studies have shown changes in glutamate
receptor binding (Konradi and Heckers 2003), reduced
expression of the NMDA subunit (NMDART1) (Meador-
Woodruff and Healy 2000) and reduced glutamate
(Ohrmann et al. 2007) in the prefrontal cortex as well.
As previously noted, direct experimental
modulations of the glutamatergic system with NMDA
antagonists such as ketamine have been intriguing. Sub
anesthetic doses of ketamine in controls induce
schizophrenia like symptoms, including thought
disorder and working memory disruption (Adler et al.
1998). Recent work suggests specific deficits in
versions of the Morris water maze task administered to
humans (Rowland et al. 2005). In patients, ketamine
exposure briefly exacerbates psychosis-related
symptoms and leads to an increase in memory-related
impairments (Malhotra et al. 1997). NMDA antagonists
also negatively affect recruitment of pathways of asso-
ciative memory retrieval including the hippocampus
and prefrontal cortex (Honey et al. 2005). In mice,
repeated post-training exposure to ketamine, leads to
selective impairment in the consolidation of spatial
associative memories that are hippocampal in their
bases (Best et al. 2001), with little effect on passive
avoidance paradigms. Finally, NMDA or glutamate
agonists induce short term increases in synaptic
transmission in the hippocampus (Kauer et al. 1988).
Thus, impairment in N-methyl-D-aspartate (NMDA)
function related to physical loss of NMDA synapses in
the hippocampal and prefrontal regions may be central
and proximate to the pathophysiology of schizophrenia
(Moghaddam 2003, MacDonald and Chafee 2006).
The role of NMDA in associative memory as
gleaned from animal studies provides unique synergy
with the schizophrenia findings to demonstrate why
glutamate function is implicated in the illness.

Glutamate, NMDA and Associative Learning
in the Brain

Associative learning and memory rely on the
consolidation and retrieval of associations between di-
verse memoranda, sensory inputs and streams of neural
activity (Friston 2003), particularly by hippocampal and
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medial temporal lobe neurons (Wirth et al. 2003). This
detection and consolidation of correlated spatio-
temporal patterns of neuronal activity was proposed in
classic neuroscience as a centerpiece of learning and
memory (Hebb 1949). The idea is that coincidence
detection (Konorski 1948) between two contem-
poraneously active synapses results in a consolidation
of linkage between these cells thereby forming the
building blocks for the localization of memories. This
basic idea is central to almost all theories of neural
encoding including long term potentiation (Bliss and
Collingridge 1993), neuronal population selection
(Edelman 1993), and coherence (Singer 1994).

N-methyl-D-aspartate (NMDA) receptors are
synaptic coherence detectors, and modulation of
detection sensitivity enhances or inhibit tasks of asso-
ciative learning/memory that rely on synaptic
coincidence. For instance, transgenic mice with an over
expression of NMDA 2-B receptors in their forebrain
show increased performance on tasks such as the water
maze task (Tang et al. 1999). Such performance
enhancement results from an increase in activation of
NMDA receptors that results in increased synaptic
potentiation. Converse effects have been documented.
Selective ablation of NMDA receptor genes in CA3
pyramidal cells of the hippocampus in adult mice,
results in marked impairment in the recall of
associations learned during the water maze task under
partially cued conditions (Nakazawa et al. 2002). This
suggests dependence of associative recall on NMDA
receptor sensitivity and the CA3 sub-region of the
hippocampus. Clearly, enhanced activation of NMDA
receptors leads to increased synaptic potentiation and
consequently increased performance on tasks such as
the water maze, that rely on associative memory for
learning and may facilitate other systems such as
working memory (Compte et al. 2000). Further synergy
with these findings is provided by in vivo studies of
memory systems in the human brain.

fMRI studies of associative memory

In vivo tMRI studies of paired-associate memory
and learning have identified correlates of the BOLD
(Blood Oxygen Level Difference) response with
learning. Using an object-location paired-associated
learning task, Buchel and colleagues (Buchel et al.
1999) demonstrated increased effective connectivity
between heteromodal cortical regions, the hippocampus
and the prefrontal cortex. These studies and others (Law
etal. 2005, Ranganath et al. 2005) emphasize the crucial
role played by the hippocampus in the formation and
consolidation of new memories (Fries et al. 2003).

A majority of published fMRI and PET studies
in schizophrenia have assessed hippocampal activity
during tasks of episodic or declarative memory and
recollection (Heckers et al. 1998, Jessen et al. 2003,
Leube et al. 2003). These studies suggest that the
conscious recollection of episodic memories (such as
memories for events or words previously learned in
word lists), leads to impaired recruitment of the
hippocampus. This pattern suggests general memory-
related dysfunction of this structure. More recent studies
have suggested slightly more complex patterns of
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functional impairment. In particularly, hippocampal
activity is not impaired when patients encode
semantically related item pairs but is impaired during
the encoding of arbitrary item pairs (Achim et al. 2007).
These studies are not strong demonstrations of impaired
hippocampal function during memory dynamics.
Nevertheless they suggest that the hippocampal
response during memory tasks is impaired in
schizophrenia, providing convergence with in vivo
structural and neurochemical studies and animal studies
on the role of NMDA and memory.

In summary, deficits of the glutamatergic system
and the NMDA receptor system are central to the
pathophysiology of schizophrenia (Konradi and
Heckers 2003, Coyle 2004, Lewis and Moghaddam
2006), and impairments in the structure and function
of both the medial temporal lobe (Harrison 2004) and
the prefrontal cortex (Lewis et al. 1999) are widely
associated with the illness and NMDA function in the
hippocampus is critical to associative memory and
learning. This convergence of findings highlights the
importance of translational and integrative neuroscience
in understanding the role of glutamate in schizophrenia
pathology.

Glutamatergic neurotransmission disturbances
and cortical disconnection in schizophrenia

The brain levels of glutamatergic metabolites can
be detected by 'H magnetic resonance spectroscopy
(MRS). This non-invasive method allows in vivo
measurements of the brain concentration of important
neurochemicals, including glutamate, glutamine, N-
acetylaspartate (NAA), and N-acetylaspartate-
glutamate (NAAG) (Stanley et al. 1996, 2000;
Brambilla et al. 2002, 2004). Glutamatergic
neurotransmission is linked to GABAergic and
monoaminergic brain neurotransmitter systems. Indeed,
glutamate, which is the most abundant excitatory ami-
no acid in the human brain, is a precursor of GABA
and stimulates GABA metabolic activity (Brambilla et
al. 2003). It is released from neuronal terminals,
subsequently taken up by glial cells, and returns to nerve
terminals as glutamine, playing a key role in synaptic
plasticity, learning, and memory. Specifically, the
enzyme glutaminase forms glutamate from glutamine
in presynaptic nerve terminals, and glutamine
synthetase forms glutamine from glutamate in the glia
cells. NAA is the second most abundant brain amino
acid after glutamate in the human brain and is the second
most prominent peak in the proton spectrum after water.
It accounts for approximately 85% of the proton signal
of'the N-acetyl group, whereas NAAG accounts for the
remaining 15% (Pouwels et al. 1998). NAAG is an
endogenous peptide binding as an agonist to NMDA
receptors and to a group Il metabotropic glutamate
receptors (i.e. mGluR3) (Trombley et al. 1990,
Sekiguchi et al. 2007). NAA is found in high
concentrations in all neurons, with highest
concentrations in pyramidal glutamatergic neurons,
whereas it is absent in glia cells (Simmons et al. 1991,
Urenjak et al. 1993). Therefore, it is thought to be a
marker of neuronal integrity, density, viability, or
activity. However, its specific neuronal function is still
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unclear. Nevertheless, there are several putative roles
for NAA, including involvement in de novo synthesis
of fatty acids, initiation of protein synthesis, NAAG
metabolism, and aspartate storage (Tsai and Coyle 1995).
Also, NAA may act via the NMDA receptor to elevate
intracellular calcium, and its concentrations may vary
as a correlate of neuronal glutamatergic activity (Rubin
etal. 1995). NAA is synthesized in the mithocondria by
L-aspartate N-acetyl transferase that uses glutamate as
a precursor for aspartate and either pyruvate or 3-
hydroxybutyrate as substrates. It is also formed by
cleavage from N-acetyl aspartyl glutamate (NAAGQG),
which yields to glutamate, by N-acylated a-linked L-
amino dipeptidase (NAALADase), and is catabolized
to acetate and aspartate by N-acetyl aspartate amino
hydrolase (amino acylase IT) (Baslow et al. 2000).

A hyperglutamatergic state in specific brain
regions, such as prefrontal cortex, anterior cingulate,
thalamus and cortical white matter, has been reported
in patients with schizophrenia as well as in high risk
subjects (Théberge et al. 2002, Tibbo et al. 2004, Chang
et al. 2007, Olbrich et al. 2007, Purdon et al. 2008).
Decreased gene expression for glutamic acid
decarboxylase (GAD), the key enzyme transforming
glutamate in GABA, has been shown in the prefrontal
cortex and striatum of subjects suffering from
schizophrenia (Akbarian et al. 1995, Bird et al. 1977,
Straub et al. 2007). Deficits of other glutamatergic
markers, such as specific receptor subtypes (GluR
AMPA/Kainate, NMDA), transporters (EAAT3,
VGIuT1), and peptides (GAP-43) have been found in
schizophrenia, particularly in prefrontal cortex,
hippocampus, and caudate (Breese et al. 1995, Kerwin
etal. 1990, Porter et al. 1997, Law et al. 2001, Weickert
et al. 2001, Scarr et al. 2005, Nudmamud-Thanoi et al.
2007). Furthermore, abnormal activity of glutamate
carboxypeptidase II (GCP II), an enzyme that forms
NAA and glutamate from NAAG, has been detected in
prefrontal cortex and hippocampus of patients with
schizophrenia (Ghose et al. 2004). Taken together, these
findings provide further evidence that glutamate
neurotransmission is implicated in the pathophysiology
of schizophrenia (Tsai 2005). One possible explanation
for these abnormalities is that reduced glutamate uptake
could account for a hyperglutamatergic state. That may
be due to impaired functionality of glutamate
transporters, such as the glial glutamate-aspartate
transporter (GLAST), and glutamate transporter-1
(GLT-1), or the neuronal excitatory amino acids carrier-
1 (EAACI). Abnormally increased levels of
extracellular glutamate are a known cause of
excitotoxicity, which leads to neuronal death (Greene
and Greenamyre 1996). Also, glutamate uptake in the
glia, which is operated by glial glutamate transporters,
stimulates glucose uptake into astrocytes (Pellerin and
Magistretti 1994). In conclusion, it is possible that
impaired glutamate/glutamine transport into nerve
terminals, or impaired glutamate/glutamine cycle,
possibly due to an enzymatic block (i.e. glutaminase
synthetase, or glutaminase), may lead to abnormal
accumulation of glutamate/glutamine. In order to
further clarify the mechanisms potentially involved,
future studies should couple the investigation of
glutamatergic neurotransmission with examination of
enzyme activity, and glutamate transporter function, to
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attempt to determine the potential altered step in the
glutamate/glutamine neuronal cycle in schizophrenia.
However, there are no currently available methods that
would allow study of these specific enzymatic activities
in the in vivo human brain. Alternatively, since the
glutamate/glutamine cycle accounts for 80% of glucose
oxidation in the resting human brain (Pellerin and
Magistretti 1994, Shen et al. 1999), a reduction of
glutamate uptake could diminish the oxidative glucose
metabolism. Moreover, reduced glycolisis diminishes
the energy needed for the conversion of glutamate to
glutamine and vice-versa, potentially leading to a block
in the glutamate/glutamine cycle, and to accumulation
of glutamate.

Future "H MRS studies with larger patient samples
and longitudinal designs will be needed to further in-
vestigate the possible role of abnormalities in
glutamatergic neurotransmission in schizophrenia.
However, there is evidence suggesting that gluta-
matergic pathways are impaired in schizophrenia,
particularly the cortico-thalamic-striatal connection. In
this regard, white matter disruption may represent the
microstructure basis of such impairment, being possibly
associated with altered synaptic plasticity (Stephan et
al. 2006). For instance, it has been suggested that
NMDA receptor subtypes may be implicated in white
matter impairments (Paoletti and Neyton 2007). One
example of such disconnection may involve reduced
integrity of cortico-cortical white matter (Brambilla and
Tansella 2007). To this extent, impairments of cortical
white matter integrity have been found in patients with
schizophrenia by several prior diffusion imaging reports
(Kubicki et al. 2005a for a review; Andreone et al.
2007a,b), particularly in frontal and temporal lobes.
Abnormalities in cortical white matter may lead to
misconnection, which may ultimately be relevant for
glutamatergic disturbances reported in schizophrenia.
This may be due to reduced axonal density or
myelination. Indeed, oligodendrocytes, which have the
potential to influence myelination and synaptic
transmission, have been found to be functionally
abnormal in schizophrenia (Hof et al. 2002, Davis et
al. 2003, Bartzokis and Altshuler 2005). Also, reduced
expression of myelin and oligodendrocyte-related
genes and proteins have been shown in schizophrenia,
suggesting oligodendrocyte dysfunction (Flynn et al.
2003, Hof et al. 2003, Tkachev et al. 2003, Chambers
and Perrone-Bizzozero 2004). Therefore, given the
central role of glutamate in excitatory neuro-
transmission, and in turn cortical connectivity
(Konradi and Heckers 2003), it will be important to
further understand white matter impairments in
schizophrenia within the framework of glutamatergic
dysfunction.

Myelin and schizophrenia

Several observations have recently suggested a
potential role of myelin proteins, white matter and
oligodendrocytes in the pathogenesis of schizophrenia.
For instance, in cerebral post-mortem tissues of
schizophrenia patients, oligodendrocyte- and myelin-
related genes, like for instance 2°,3’-cyclic nucleotide
3’-phosphodiesterase (CNP), SRY (sex determining
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region Y)-box 10 (SOXI10), myelin-associated
glycoprotein (MAG), peripheral myelin protein 22
(PMP22) are down-regulated (Dracheva et al. 2006,
McCullumsmith et al. 2007, Karoutzou et al. 2008).
MAG knockout mice show changes in dendritic
branching patterns of pyramidal cells in layer III of the
prefrontal cortex, which might be especially relevant
for schizophrenia dysfunction (Haroutunian 2007)
significant down regulation is also observed for glial
gene quaking (QKI) (Mclnnes and Lauriat 2006,
McCullumsmith et al. 2007). This gene encodes for a
RNA binding protein responsible of splicing and
stabilization of mRNA transcript that plays a role in
myelination. Accordingly mutant mice in which the 5’
promoter region of this gene is disrupted show abnormal
compaction of myelin and dysregulation of cytoplasmic
loop formation (Hardy 1998) and behavioral
abnormalities. Interestingly, these alterations show
some similarities to myelin structure observed within
prefrontal cortex and caudate nucleus of schizophrenic
subjects (Uranova et al. 2001, 2004). Moreover, QKI
encodes also for proteins able to control oligo-
dendrocyte differentiation, such as QKI-5, 6 and 7
(MclInnes & Lauriat 2006). Other genes controlling the
differentiation and function of oligodendrocytes have
been associated with schizophrenia. For instance, a role
for oligodendrocyte lineage transcription factor 2
(OLIG2), which encodes for a transcription factor
central to oligodendrocyte development and which is
reduced in post-mortem schizophrenic brain, has been
recently proposed (Georgieva et al. 2006). In addition,
evidences have been accumulated implicating neuro-
regulin 1 (NRG1) and its receptor erbB4. For instance,
transgenic mice in which erbB signaling is blocked in
oligodendrocytes show reduction in myelin sheath
thickness, slow conduction velocity in CNS axons and
changes in oligodendrocyte number and morphology
(Roy etal. 2007). Interestingly, these animals also show
behavioral alterations, such as reduced locomotor
activity and exploration in novel open space, elevated
plus maze and abnormal social behaviour, which are
also associated with schizophrenia (Roy et al. 2007).
Indeed, a systematic direct gene analysis has indicated
an interaction between variants in NRGI, erbB4 and
that this interaction is associated with increased risk of
schizophrenia (Norton et al. 2006). These findings,
together with other observations obtained by an electron
microscopic study in the prefrontal cortex of
schizophrenia patients, which showed a significant
decrease in the density of oligodendrocytes (Uranova
etal. 2004), suggest that alterations in myelin synthesis
as well as in differentiation and oligodendrocyte
function may contribute to the altered connectivity
observed in schizophrenia. Abnormalities of NGR1 and
erbB4 might also represent an important link between
glutamate and oligodendrocyte dysfunction in
schizophrenia.

Deficit of myelin in schizophrenia probably arises
from a failure occurring during late adolescence and
early adulthood and this might also affect the age of
onset of the disorder (Dwork 2007). Myelin and
oligondendrocyte abnormalities, together with
abnormal function at neurotransmitter level might
contribute to functional disconnectivity that represents
a central aspect of schizophrenia.
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Conclusions

There is strong evidence from animal and human
studies that glutmatergic pathways are impaired in
schizophrenia. In particular, disrupted NMDA receptor
sensitivity and learning may be critical to understanding
the functional expression of the altered glutamatergic
transmission in schizophrenia. However, whereas
experimental approaches abound, there is a critical need
to integrate animal studies of glutamate neurotransmis-
sion, human iz vivo studies of structure and function
relevant to the glutamate system, and computational
models of pharmacologic and behavioral processes.
Such integrative (as opposed to only translational)
approaches are needed to develop a clearer
understanding of molecular, neural and behavioral
disruptions in schizophrenia.
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